Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 1937: 227-234, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30706400

RESUMO

Genetic nephropathies represent a challenging class of disorders to be treated by gene therapy. This is primarily due to the filtering properties of the kidney itself, which does not allow the vehicle carrying the transgene of interest to remain long enough in the organ to penetrate efficiently into the nephrotic cells. Also, the kidney has a complex anatomical structure composed of different cell types compartmentalized within isolated anatomic structures that limit their access. Here, we describe a simple surgical procedure to deliver recombinant adeno-associated virus (rAAV) to the whole kidney based on the hydraulic force of the retrograde renal vein injection. In its clinical form, this procedure would correspond to a renal venography where a catheter is threaded retrograde from the femoral vein under fluoroscopic guidance.


Assuntos
Vetores Genéticos/administração & dosagem , Rim/cirurgia , Veias Renais/virologia , Animais , Dependovirus/genética , Técnicas de Transferência de Genes , Terapia Genética , Injeções Intravenosas , Rim/inervação , Camundongos , Modelos Animais , Transdução Genética , Transgenes , Procedimentos Cirúrgicos Urológicos
2.
Sci Rep ; 8(1): 8214, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29844458

RESUMO

Genome editing is the introduction of directed modifications in the genome, a process boosted to therapeutic levels by designer nucleases. Building on the experience of ex vivo gene therapy for severe combined immunodeficiencies, it is likely that genome editing of haematopoietic stem/progenitor cells (HSPC) for correction of inherited blood diseases will be an early clinical application. We show molecular evidence of gene correction in a mouse model of primary immunodeficiency. In vitro experiments in DNA-dependent protein kinase catalytic subunit severe combined immunodeficiency (Prkdc scid) fibroblasts using designed zinc finger nucleases (ZFN) and a repair template demonstrated molecular and functional correction of the defect. Following transplantation of ex vivo gene-edited Prkdc scid HSPC, some of the recipient animals carried the expected genomic signature of ZFN-driven gene correction. In some primary and secondary transplant recipients we detected double-positive CD4/CD8 T-cells in thymus and single-positive T-cells in blood, but no other evidence of immune reconstitution. However, the leakiness of this model is a confounding factor for the interpretation of the possible T-cell reconstitution. Our results provide support for the feasibility of rescuing inherited blood disease by ex vivo genome editing followed by transplantation, and highlight some of the challenges.


Assuntos
Edição de Genes , Imunodeficiência Combinada Severa/genética , Animais , Proteína Quinase Ativada por DNA/genética , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos SCID , Proteínas Nucleares/genética
3.
Endocrinology ; 157(4): 1363-71, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26812160

RESUMO

Hypothyroidism is the most frequent and earliest endocrine complication in cystinosis, a multisystemic lysosomal storage disease caused by defective transmembrane cystine transporter, cystinosin (CTNS gene). We recently demonstrated in Ctns(-/-) mice that altered thyroglobulin biosynthesis associated with endoplasmic reticulum stress, combined with defective lysosomal processing, caused hypothyroidism. In Ctns(-/-) kidney, hematopoietic stem cell (HSC) transplantation provides long-term functional and structural protection. Tissue repair involves transfer of cystinosin-bearing lysosomes from HSCs differentiated as F4/80 macrophages into deficient kidney tubular cells, via tunneling nanotubes that cross basement laminae. Here we evaluated the benefit of HSC transplantation for cystinotic thyroid and investigated the underlying mechanisms. HSC engraftment in Ctns(-/-) thyroid drastically decreased cystine accumulation, normalized the TSH level, and corrected the structure of a large fraction of thyrocytes. In the thyroid microenvironment, HSCs differentiated into a distinct, mixed macrophage/dendritic cell lineage expressing CD45 and major histocompatibility complex II but low CD11b and F4/80. Grafted HSCs closely apposed to follicles and produced tunneling nanotube-like extensions that crossed follicular basement laminae. HSCs themselves further squeezed into follicles, allowing extensive contact with thyrocytes, but did not transdifferentiate into Nkx2.1-expressing cells. Our observations revealed significant differences of basement lamina porosity between the thyroid and kidney and/or intrinsic macrophage invasive properties once in the thyroid microenvironment. The contrast between extensive thyrocyte protection and low HSC abundance at steady state suggests multiple sequential encounters and/or remanent impact. This is the first report demonstrating the potential of HSC transplantation to correct thyroid disease and supports a major multisystemic benefit of stem cell therapy for cystinosis.


Assuntos
Cistinose/terapia , Modelos Animais de Doenças , Transplante de Células-Tronco Hematopoéticas/métodos , Glândula Tireoide/fisiopatologia , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Animais , Diferenciação Celular , Cistina/metabolismo , Cistinose/genética , Cistinose/fisiopatologia , Feminino , Células-Tronco Hematopoéticas/metabolismo , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Lisossomos/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal , Glândula Tireoide/metabolismo , Tireotropina/metabolismo , Transplante Homólogo
4.
Gene Ther ; 21(6): 618-28, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24784447

RESUMO

Effective gene therapy strategies for the treatment of kidney disorders remain elusive. We report an optimized kidney-targeted gene delivery strategy using recombinant adeno-associated virus (rAAV) administered via retrograde renal vein injection in mice. Renal vein injection of rAAV consistently resulted in superior kidney transduction compared with tail vein injection using as little as half the tail vein dose. We compared rAAV5, 6, 8 and 9, containing either green fluorescent protein (GFP) or luciferase reporter genes driven by the Cytomegalovirus promoter. We demonstrated that although rAAV6 and 8 injected via renal vein transduced the kidney, transgene expression was mainly restricted to the medulla. Transgene expression was systematically low after rAAV5 injection, attributed to T-cell immune response, which could be overcome by transient immunosuppression. However, rAAV9 was the only serotype that permitted high-transduction efficiency of both the cortex and medulla. Moreover, both the glomeruli and tubules were targeted, with a higher efficiency within the glomeruli. To improve the specificity of kidney-targeted gene delivery with rAAV9, we used the parathyroid hormone receptor 'kidney-specific' promoter. We obtained a more efficient transgene expression within the kidney, and a significant reduction in other tissues. Our work represents the first comprehensive and clinically relevant study for kidney gene delivery.


Assuntos
Dependovirus/genética , Vetores Genéticos/administração & dosagem , Veias Renais/efeitos dos fármacos , Animais , Terapia Genética/métodos , Injeções , Rim/efeitos dos fármacos , Rim/fisiologia , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Receptor Tipo 1 de Hormônio Paratireóideo/genética , Cauda , Transdução Genética , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...